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Unsuitability of NOTEARS for Causal Graph Discovery

Marcus Kaiser · Maksim Sipos

Received: date / Accepted: date

Abstract Causal Discovery methods aim to identify a DAG
structure that represents causal relationships from observa-
tional data. In this article, we stress that it is important to
test such methods for robustness in practical settings. As
our main example, we analyze the NOTEARS method, for
which we demonstrate a lack of scale-invariance. We show
that NOTEARS is a method that aims to identify a parsimo-
nious DAG from the data that explains the residual variance.
We conclude that NOTEARS is not suitable for identifying
truly causal relationships from the data.

Keywords Causal Discovery · Bayesian Networks ·
Structure Learning · DAGs

1 Introduction

Establishing the relationship between cause and effect nor-
mally requires a randomized controlled trial (RCT), or an
ability to perform an intervention [11]. However, this is not
always possible or ethical in practical settings. The field of
Causal Discovery aims to identify causal relationships from
purely observational data. For tabular data with indepen-
dently and identically distributed (IID) samples, causal re-
lationships can conveniently be represented by a Directed
Acyclic Graph (DAG) [3,11]. Thus the aim of many Causal
Discovery methods is to generate a DAG that resembles the
true causal relationships in the data. For most real world use
cases, there typically is no ground truth one can compare
results to and it is only partially possible to verify the iden-

M. Kaiser
causaLens
E-mail: marcus@causalens.com

M. Sipos
causaLens
E-mail: max@causalens.com

tified cause and effect relationships. Therefore, it is impor-
tant that methods deployed on such data are robust with re-
spect to changes in hyperparameters [5], and invariant with
respect to reparameterization of the data. When it comes to
applicability of newly developed methods to real data, there
are the following pitfalls:

– Evaluation on examples for which the method has been
developed (and is expected to perform well). It is impor-
tant to also test how the method behaves when some of
the assumptions (such as linearity, additivity, homoscedas-
ticity and causal sufficiency [11]) are not satisfied.

– No checks for robustness to changes in hyperparameters.
In order to be able to trust the results, it is important that
the results either are only mildly affected by changes of
hyperparameters, or there are reasonable heuristics for
how to choose these hyperparameters.

– No checks for invariance with respect to the parameter-
ization of the data. For example, how does the method
behave when the scale of some of the variables is altered
(such as a change of units, for example from meters to
centimeters).

For the rest of the paper, we focus on the third point. We
analyze the recent NOTEARS [17] method and show how a
simple rescaling of the variables can lead to a large alteration
of the derived graph.

2 The NOTEARS method

One popular method (with 100+ citations) for extracting a
DAG structure from observational data published recently is
NOTEARS (with open source code available from https:

//github.com/xunzheng/notears). Given a loss func-
tion `(W ;X), the core idea of this method is to optimize the
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objective function

F(W ) := `(W ;X)+λ‖W‖1, (1)

with the additional constraint that the weight matrix W has
to represent a DAG. ‖ · ‖1 is the L1 matrix norm and λ ≥
0 is a regularization parameter that controls the sparsity of
the identified weights. Following the suggestion in [17], we
concentrate on the least-squares loss, given by

`(W ;X) :=
1
2n
‖X−XW‖2

F , (2)

where ‖ · ‖F is the Frobenius norm or L2 matrix norm and n
is the total number of samples. We come back to the choice
of `(W ;X) in Section 6 below. Theorem 1 in [17] states that
W ∈ Rd×d is a DAG if and only if

h(W ) := trace
(

eW◦W
)
−d = 0, (3)

where A◦B is the Hadamard product (entry-wise product of
matrix entries). Based on this insight, the authors of NOTEARS
define the following constrained non-linear problem

min
W∈Rd×d

F(W ) subject to h(W ) = 0. (4)

Problems of the form (4) can be solved using an Augmented
Lagrangian [2] approach, which replaces the constrained prob-
lem with a sequence of unconstrained problems. It is given
by

min
W∈Rd×d

F(W )+
ρ

2
|h(W )|2 +αh(W ), (5)

where α > 0 and ρ > 0 are iteratively increased, in order
to find solutions that minimize h(W ) (see [17] for the full
details). Asymptotically, this leads to an (approximate) DAG
structure for W . The whole algorithm can then be seen as an
outer update step, where α and ρ are increased, as well as
an inner update step, which can e.g. be solved with a second
order Newton method, such as L-BFGS-B [19]. There are a
few points worth noting here:

– The overall algorithm is non-convex, which implies that
the method can have multiple minima (and potentially
can get stuck in such a local minimum).

– The method tries to find a trade-off between three ob-
jectives, which are an optimal fit of the linear model
X = XW , whilst W should both resemble a DAG and
be sparse.
Note that the first objective is opposed to the second and
third objective, which both are aligned to one another as
it is easier for a graph to not violate the DAG constraints
when it has fewer edges that could violate these assump-
tions.

Fig. 1 The weights of the simulated process. The entries in the i-th
column represent how much variable i is affected by all other variables.
Top row: We show the ground truth, results for the original generated
data, as well as results for standardized data. Bottom row: Results for
the LiNGAM algorithm (for comparison).

– The (approximate) DAG structure returned by the algo-
rithm does not necessarily represent any causal relation-
ships between the variables, but rather is the estimated
result of a parsimonious model of the form of a linear
Structural Equation Model (SEM) [3].

Although the authors in [17] do not claim that the es-
timated SEM represents causal relationships, one can find
many references in the literature, which equate the struc-
ture learning approach from NOTEARS with learning causal
graphs or Bayesian networks, cf. [7,16,18,9,1,4]. This how-
ever is not appropriate because identifying parsimonious struc-
tures that explain the data is not equivalent to making state-
ments about causality in the data generating process, cf. the
discussion in [15, Sec. 6.2]. Causal graphs imply more infor-
mation than that which is present within a statistical model
such as a Bayesian Network, most notably the ability to
model interventions upon the data using do-calculus [10,
13].

3 Illustrative example

We consider a simple example consisting of a linear SEM
with four variables X = (X0,X1,X2,X3), uniform noise and
n = 1000. Each variable is centered to be mean zero. This
setup satisfies the assumptions of NOTEARS and therefore
the method is expected to perform well. We want to under-
stand how this method is affected by rescaling the data. We
stress that the below described issues do not depend on this
particular setup, but are general.

Figure 1 presents five plots. The first row shows the un-
derlying ground truth W used to generate the data, followed
by two iterations of NOTEARS. It is applied to the raw data
(with standard deviations σ(X) = (0.86,1.56,1.07,0.76)),



Unsuitability of NOTEARS for Causal Graph Discovery 3

as well as normalized (unit standard deviation for all vari-
ables). The bottom row shows the corresponding results for
the LiNGAM [14] algorithm (based on the DirectLiNGAM
implementation available at https://github.com/cdt15/
lingam). We can observe that the result from NOTEARS
on the original scale (second plot on the top) is close to the
ground truth, but the identified variables for normalized data
are not correct (top right). One can see that the weights for
X0 and X1 are “flipped”, resulting in the method identifying
that X1→ X0, as opposed to X0→ X1 (cf. the description of
Figure 1 for how to interpret the coefficients). In compari-
son, LiNGAM is able to correctly identify the variables. (For
the scaled variables, the resulting weights differ due to the
scaling, but the identified DAGs coincide.)

Note that for λ > 0, one would expect the scaling to af-
fect the results, since the addition of an L1 penalty leads to a
biased estimate of the true coefficients. (For example, if we
rescale the variable X0 by a factor c > 1, then the original
weights are shrunk by a multiplicative factor of 1/c, which
affects the ‖W‖1 component of the loss in (1).) To isolate
the influence of the L1 penalty, the results we present here
(and in all the following sections) are for λ = 0. We again
stress that the qualitatively same behavior can be observed
for λ > 0.

4 Further observations and remarks

Next, we analyze the dynamics of this iterative method to
understand where things go wrong. It is convenient to vi-
sualize the results after each iteration of the inner update
step. Figure 2 shows the total loss (from Eq. (5)) after each
iteration, together with `(W ;X) and h(W ). After the first in-
ner step (displayed at index 0), there is a small penalization
for the lack of a DAG structure. In this case, the method
“overfits” the data, leading to a fairly small loss `(W ;X), and
hence a small overall loss in Eq. (5). As the loss contribution
of h(W ) is increased with each step, the loss `(W ;X) tends to
increase as well. This represents the tradeoff between fitting
the data well and satisfying a DAG structure. Interestingly,
also h(W ) has the tendency to increase initially. Once the
multiplicative factors applied to h(W ) in Eq. (5) increase,
h(W ) becomes the predominant contributor to the loss at
later iteration of the outer loop. This ensures that h(W ) even-
tually approaches 0.

In Figure 3, we visualize the dynamics of W for different
rescaling factors of the data. Each row represents the evolu-
tion of one set of weights. From top to bottom, the variables
are incrementally rescaled - for the first row, we used the
original data and in the last row we used the “fully rescaled”
data, where each variable is normalized to unit variance.

We observe that the first inner update step largely deter-
mines the final structure, with mainly smaller adjustment in
the later steps. The first two rows lead to the correct result,

Fig. 2 Plots of the loss terms.

Fig. 3 Each row represents the evolution of the weights with each inner
update step, for different scaling factors (cf. main text).

but as we increase the rescaling factors for the variables, the
method converges to a different (wrong) solution. Again, we
can observe that for larger rescaling factors (close to unit
variance for all variables), the results are flipped for certain
variables.

In summary, we observed the following points: The first
inner update step largely determines the final structure. More-
over, this first update step seems to overfit the data and the
result thereof is sensitive to the scaling of the variables.

5 Explanation

To better understand how the results depend on the scale,
we consider the following toy example with two variables,
where X0 = γX1 for some γ > 0. Note that this is clearly a
pathological example with no “correct” solution, since we
can equivalently write X1 = γ−1X0. Nonetheless, the exam-
ple is useful for understanding the internal workings of the
algorithm.

https://github.com/cdt15/lingam
https://github.com/cdt15/lingam
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In order to minimize `(W ;X), the method initially chooses
positive weights for both off-diagonal entries of W (in vio-
lation of the acyclicity constraint!). The strength of the vi-
olation of this constraint depends on the size of the penalty
h(W ) compared to the remaining error in `(W ;X).

Then, with each iteration, the weight of one of the two
off-diagonal entries is pushed to zero, to compensate for
the increasing penalty of h(W ) until one of the two terms
is equal (or at least close) to 0. The crux here is that we
aim to achieve the overall smallest loss of F(W ), which in
this case is obtained by minimizing the sum of residual vari-
ances, which is the minimum of

‖X0‖2+‖X1−X0w01‖2 and ‖X1‖2+‖X0−X1w10‖2, (6)

where w01 and w10 are the respective regression coefficients.
For this example, the second term in both equations is zero,
due to the perfect linear relationship X0 = γX1. Therefore,
the chosen direction solely depends on the variances of X0
and X1. When γ > 1, then X1 has the larger variance, and thus
the lower residual error is obtained for the choice X0 → X1
and X1→ X0 for γ < 1 (for γ ≈ 1 the direction is subject to
randomness). In other words, the variable with lower vari-
ance is identified as the driver of the variable with higher
variance.

For a general example, the weights after the initial up-
date step will typically satisfy |Wi j| > 0⇔ |Wji| > 0, with
equal signs, whenever the variables are nonzero. This ex-
plains the initial “overfitting”: The outcome of the first inner
update returns a matrix that explains variables “both ways”.
In later iterations, once the penalty for h(W ) is increased,
the method will force a selection of the weights to zero in
order to obtain a valid DAG structure.

Moreover, it is easy to show that increasing the variance
for a single variable will lead to many edges pointing to
this variable. This is because the ‖X −XW‖2

F term in the
loss function cannot be reduced to zero due to the acyclic-
ity constraint. Some of the feature vectors X j will always be
“source variables” for which all XW terms are identically 0,
whereas others will be “sink variables” for which the XW
terms are nonzero. When a feature vector X j has a signif-
icantly higher variance than other vectors, the NOTEARS
method will prefer entries that reduce this variance as much
as possible, thereby prioritizing inbound edges into the j-th
node. This intuitively explains why the method lacks scale
invariance, it is because nodes with high variance are pre-
ferred to be sinks as opposed to sources. As one performs
a sweeping increase of the variance of a variable by chang-
ing its units, the resulting DAGs will change from having
this variable act as a source to having this variable act as
a sink. This is exemplified in Figure 4, where the method is
applied to the same data, with the exception that the variance
for the fourth variable X3 is doubled in each iteration. Iter-
ating this argument, by rescaling all variables accordingly,

Fig. 4 Multiple runs of the same example, where from left to right,
the fourth variables is rescaled by the factors [1,2,4,8,16,32], respec-
tively.

one can then generate an arbitrary topological order (cf. Ap-
pendix B in [11]) for the identified DAG.

The same issue persists for nonlinear extensions such as
NOTEARS-MLP [18] (https://github.com/xunzheng/
notears), which also depends on the Augmented Lagrangian
approach described above.

6 Related work

Since we finished the initial version of this work, we be-
came aware of the recent preprint [12], which also addresses
the point of scale dependence of continuous score methods
from a more theoretical perspective. This section of the pa-
per links our findings with the literature and in particular
reflects the discussion in [12].

Under suitable assumption on the data generation pro-
cess combined with the structural form X = XW + ε , the
authors of [6] show that the global minimizer of the least
square error in Equation (2) does not always correspond
to the true causal structure and establish that Equation (2)
should be replaced by the Mahalanobis distance for the co-
variance of the noise terms Σ := Cov(ε), i.e.

`(W ;X ,Σ) :=
1

2n
‖(X−XW )Σ−1/2‖2

F (7)

to guarantee that the global minimizer of (7) corresponds
to the true causal structure. Since the true noise variance is
not known for real world applications, one possibility is to
estimate Σ as the residual variance of X −XW . This is ad-
dressed by the authors of GOLEM [8], which aim to improve
on NOTEARS by replacing Equation (2) by a Gaussian log-
likelihood function. They propose two versions with differ-
ent plug-in estimators for the residual variance – one with
equal variances (GOLEM-EV) and one with non-equal vari-
ances (GOLEM-NV). An interesting point worth noting is
that the likelihood contains the term log |det(I−W )|, which
can be seen as a soft constraint for acyclicity and improves
the performance of GOLEM over NOTEARS on synthetic
data [8]. The resulting likelihood functions are given by

`EV (W ;X) :=
d
2

log
(
‖X−XW‖2

F
)
− log |det(I−W )| (8)

https://github.com/xunzheng/notears
https://github.com/xunzheng/notears
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and

`NV (W ;X) :=
1
2

d−1

∑
i=0

log
(
‖(X−XW )i‖2)− log |det(I−W )|,

(9)

where (X −XW )i is the i-th column of the residual matrix.
Note that we have `NV (W ;X) ≤ `EV (W ;X)− log(d) by an
application of Jensen’s inequality. Similar results to the ones
in Section 5 apply for Equations (8) and (9) and in particular
the same implication holds for Equation (6).

We refer the reader to [12], where the authors show that
GOLEM-EV is – just as NOTEARS – susceptible to rescal-
ing of the data. GOLEM-NV is less affected by rescaling
variables, but the overall performance of GOLEM-NV on
unscaled data is worse. The authors stress that the perfor-
mance of such methods on synthetic data can often be at-
tributed to the way data are simulated for additive noise
models (child nodes have a higher variance than their par-
ents). They define a baseline method, which identifies a DAG
structure that corresponds to increasing variance and also
propose a new measure for simulated data, which allows to
identify to which extent child nodes in the simulated DAG
have higher variances than their parent nodes.

7 Conclusion

We have seen that we can interpret NOTEARS as a method
for finding parsimonious linear SEMs that best explain the
data (as measured via the specified loss error). We showed
that the results of the method heavily depend on the scale of
the data. Similar to [12], we conclude that it is very impor-
tant to carefully choose the scale of the data when one con-
siders NOTEARS (or any method with similar loss function,
cf. [8,1,15]) for the identification of parsimonious models in
real world scenarios.

We here make the stronger claim that such methods are
not suitable for identifying true causality from real world
data. In deed, if the variables are on different scales (with
different variances), then the edge orientation will be biased
towards explaining variables with larger variances (subject
to compatibility with the DAG-constraint). If the variables
have (roughly) the same variance, then the resulting orien-
tation of edges in the corresponding DAG will be subject to
randomness.
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